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ABSTRACT
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paper we introduce the idea of a picture uncertaisnft G-module for a given classical module anceatigate some of
the crucial properties as well as properties of thepected concept. The ideas of G-invariant pictureertainty soft G-

modules are also discussed.
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INTRODUCTION

The concept of uncertaintysets was first introduogdadeh [20] in 1965 and the uncertainty seteeHasen used in the
reconsideration of classical mathematics. Receivilygn [19] introduced the concept of uncertaint slivision group
with thresholds. A fuzzy subgroup which thresholdsandp”, is also called aXu)—uncertainty subgroups. Yao [16]
continued the research of,()—fuzzy normal subgroupsj.()—uncertainty quotient subgroups arduj—uncertainty
subrings [17]. L.A.Zadeh [20] in 1965 introducee ttoncept of uncertaintysets to describe vaguemasisematically in
its very abstractness. The notion of L- uncertas#ts in lattice theory introduced the conceptarafertainty sub lattices
and uncertainty ideals in [15]. In particular, Njm@al and K.V. Thomas [2-4] systematically develophd theory of
uncertainty sub lattice. The theory of G-moduleiginated in the 20th century. Representation thewag developed on
the basis of embedding a group G in to a lineaugGL (V). The theory of group representation (Gdule theory) was
developed by Frobenious G [1962], soon after thecept of fuzzy sets were introduced by Zadeh in51®fhcertainty
subgroup and its important properties were defiard established by Rosenfeld in 1971. After thatthie year 2004,
Shery Fernandez introduced uncertainty parallefhefnotions of G-modules. Here, we give some bdsfmitions and
results related to fuzzy sub lattice which is takem their work. The concept of group actions erevarious algebraic
structures in [9, 13]. Let X is a non-empty setmApping 1: X— [0, 1] is called a uncertainty subset of X. Roséh{12]
applied the concept of uncertainty sets to therthebgroups and defined the concept of uncertasntygroups of a group.
Since then, many papers concerning various unogytalgebraic structures have appeared in theatitee [1, 57, 11,

18]. The target of this study is to observe somthefalgebraic structures of a picture uncertasiofy set. So, we introduce

www.iaset.us editor @ aset.us



32 S. V. Manemaran & R. Nagaraja

the concept of a picture uncertainty soft G-modofea given classical module and investigate somehef crucial
properties and characterizations of the expectedeqt. The ideas of G-invariant picture uncertaofy G-modules are

also discussed in this article.
2.PRELIMINARIES

Let ‘M’ be a module over the ring of integers Z a&ade a countable group which acts on M
((ie) 0 gOG, xOM, x? =gxg™ OM).
The identity element of G is denoted by “e”.

Definition 2.1: A group action of G on a uncertainty soft set #’a Z-module M is denoted byA? and is defined by
A*(x)=Alx?) g OG.

From the definition of group action G on auncetttasoft set, following results are easy to verify.
Definition 2.2: A uncertaintyset 1 in a universe X is a mapping{u— [0,1].

Definition 2.3: Let G be a finite group. A vector space M oveietdfK (a subfield of C) is called a G-module if fevery
g € G and me M, there exists a multiplication (called the rigidtion of G on M) m.g M which fulfils the following

axioms.

* m.1G = mfor all me M (1G being the identify of G)

e m.(g.h)y=(m.g). h, M, g, he G

o (kymy+ ko m). G =lg (M. g) + k(M. g), k, kee K, m, meM &g € G.
In a similar manner, the left action of G on M dandefined.

Definition 2.4: Let M and M* be G-modules. A mapping @-WM* is a G-module homomorphism if

o @(klml+k2m2) =kl d (ml)+ k2 33 (m2)
e @(gm)=gd(m), k1, kEK, m,ml, mE M&ge G.

Definition 2.5: Let ‘M’ be a G-module. A subspace N of M is a @bsnodule if ‘N’ is also a G-module under the agtio
of G.

Definition 2.6: Let ‘U’ be any Universal set, E set of parametend AJE. Then a pair (K, A) is called soft set over U,

where K is a mapping from A td’2the power set of U.

Example 2.7: Let X={c1,c,,c3} be the set of three cars and E={costly(emetallic color(g), cheap(g} be the set of
parameters, where A = {&} O E. Then (K, A) = {K(&) = {c1,CxC3}, K(e,) = {c1,C:}} is the crisp soft set over X.

Definition 2.8: Let ‘U’ be an initial universe. Let P(U) be the pawset of U, E be the collection of all parametand
ACE. A soft set f,;, E) on the universe U is defined by the set ofeondairs f,, E)={(e, fi(e)):esE, f,€P(U)} where
fa:E—P(U) such thaf, (e) =¢, f (e) €A. Here 'f,’ is called an approximate function of the soft set

Example 2.9:Let U = {u;,u,,us, u,} be a set of four shirts and E = {white,}, red e,), blue e;)} be a set of
parameters. If A=¢,, e,} SE. Let fy(e;) ={u;,uz,us,u,} and fy(e;) = {u;,uy,us}. Then we know the soft sefy, E) =

{(eq, {uq, uy, us, uy}), (2, {ug,u,,us})} over U which explain the “color of the shirtsthich Mr. X is going to buy. We
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A Group Action on Picture Fuzzy Soft G-Modules 33

may represent the soft set in the following form={e,u), (&,u), (enly), (&), (1), (&Us), (Er, W)}

Definition 2.10: Let ‘U’ be the universal set, E set of parametard AJ E. Let K(X) denote the set of all uncertainty
subsets of U. Then a pair (K, A) is called uncetiasoft set over U, where ‘K’ is a mapping fromaK(U).

Example 2.11:Let U = {c;, ¢, ¢} be the set of three cars and E = {costly),(enetallic color (g, cheap (9} be the
collection of parameters, where Az{e}E. Then (K,A) = {K(q) = {c./0.6, ¢/0.4, ¢/0.3}, K(e;) = {c/0.5, /0.7,
c3/0.8}} is the uncertainty soft set over U denotedHa.

Definition 2.12: Let K5 be a uncertainty soft set over U andbe a subset of U, then upperinclusion of K, denoted by

K ={x OA/K(x)>a}. Similarly K®,={x OA/K(x)<a} is called lowera-inclusion of K,.

Definition 2.13: Let Ky and G be uncertainty soft sets over the common universmdy:A — B be a function. Then,
uncertainty soft image of Kundery over U denoted by(K,) is a set-valued function, wheyéK ) : B— 2" defined by
y(Ka) (b) = {0{K(a) / adAandy (a)=b},if y(b)z ¢} for all bOB, the soft pre-image of Zundery over U denoted by’
4Gg) is a set-valued function, wheréGg) : A — 2" defined byy(Gg)(b) = Gfy(a)) for all alJA. Then uncertainty soft
anti-image of K undery over U denoted byy(K,) is a set-valued function, wherg(K,):B-2" defined byy
YK a)(0)={ n{K(a)/aDA and(a)=b}, if y*(b) # o, for all bOB.

Lemma 2.14 [P.K.Sharma]: Let ‘G’ be a countable group which acts on Z-medu. Then for every
x,yOM, gOG and r 0Z, we get,

(x+ Y)g =x9 +y?
(xy)° =
- (x)°=
¢ (xy)° ( y?)
Proof: (i) Since (x + y)? =g(x + y)g
=gxg~ +gyg™
X9 +y9
i) (x)° = g(x)g ™ =g(xey)g ™
= glxg™gy)g™
=(gxg™)oya™)

iy (x)° = g(rx)g™
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34 S. V. Manemaran & R. Nagaraja
=g(x+X+.....+rtimegg™
=gxg" +gxg T +gxg T +.....+rtimes
=r (gxg?)
=r x°

-1

) (x,y)* = o(x y)g

3.PICTURE UNCERTAINTY SOFTG-MODULES

In this part, we define the concept of Picture ju3nft G-module of a given classical module oveing and also study

its elementary properties and characterizationsoddghout this article, R denotes a commutative wiith unity 1.

Definition 3.1: Let ‘M’ be a module over a ring R. A picture urtaénty soft set ‘A’ on M is called a picture
uncertaintysoft G-module of M if the following caitidns are satisfied:

(PFSGM-1)A(0) = X
ie) P,(0)=1, N,(0)=1, 1,(0)=0
(PFSGM-2): A(x + y) =Min{A(x), A(y)}, foreachx, yIM
(&) Pa(x+y) 2Min{P, (x), P, ()}
N (x+y) 2Min{N, (), N, (y)},
La(x+y) sMax{l (), 1, ()}
(PFSGM-3) A(rx) = A(X), for eachxOM, rOR,
(ie) Py (rx) 2 P, (X),
NA (M) 2N, (X),
1, (r)< 1, ().

The collection of all picture uncertainty soft G-dubes of M is denoted by PFSG(M).

Example 3.2:Let us take the classical ring R #Z{0, 1, 2, 3}. Since each ring is a module orlitswe consider M = Z

as a classical module.
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A Group Action on Picture Fuzzy Soft G-Modules 35

Define a picture uncertainty soft set ‘A’ as follsw
A={(11,0)/0+( 07,04,07)/1+( 08,0204)/2+( 07,02,07)/3

It is clear that the picture uncertaintysoft setih\a picture uncertaintysoft G-module of M.

Proposition 3.3:Let ‘A’ be a picture uncertainty soft set of Z-mdel M and G be a finite group which acts on M. Rife

is also a picture uncertainty soft G-module of M.
Proof: Clearly, (PFSGM-1):A? (0)= A(0%)=A(0) =1.
(PFSGM-2): Letx, YOOM, gJG and r JZ, then by Lemma 2.14 (i),
A% (x+y) = A{(x + y)g}
=Axe +y°)
> min{A(x?), A(y*)}
= min{A(x), A% (y)}.
(PFSGM-3): A° (1X) = A{(rx)°
= A(r xg)
> A(xg)
= A°(x)
By Lemma 2.14 (i) and (iii)

Hence, Ais picture uncertaintysoft G-module of M.

Remark 3.4: The revers of Proposition 3.3 does not hold.
Example 3.5:LetM ={Z4 ={ 01, 2,3}, +4, X4} regarded as Z-module and a finite gr(ﬁ‘wp:({ 0, 1,2,3;4}, X5).

Consider a picture uncertainty soft set A of M givey A(0)= 0.2, A(1)= 0.3 A(2)= 0.7, A(3)= 04.

Clearly, ‘A’ is not picture uncertainty soft G-mddwf M, because
ARR+4%) = AQ) = 03<04

=min{ 0.7, 04}

=min{A@2), AQ)}

Take g = 3, so that'g= 2, then
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36 S. V. Manemaran & R. Nagaraja

1, if x=0,2

x? =gxg™ =3X, x X, 2=6x(mod4) =2x(mod4), we get A%(x) = Alx? | = _
gxg™ =3X, X X, 2=6x(m0d4)=2x(mod4), We g ()/A(){O_Ll,,fle3
Now, it is easy to check that’As picture uncertainty soft G-module of M.

Definition 3.6: Let A and B be picture uncertainty soft sets ontihén their sum A+B is a picture uncertainty seft an

Pas () =max min{P,(y). R, (z}/ x=y + z y.z0M}
NN-B(X):ma*min{NA(y)’ NB(Z)}/X: y+2zyzl M}

l A+B(X):min{ma){ IA(y)' l B(Z)}/X:y+ zy,zU M}

Definition 3.7: Let ‘A’ be a picture uncertainty soft sets on Memn — A is a picture uncertainty soft set on M,rled as

follows:
PA(X)=Py(=X),N_,(X) =N, (=X),1 _,(X) =1 ,(=X), for eachxUM
4.CHARACTERIZATION OF PICTURE UNCERTAINTY SOFT G-MODULES

In this part, we analyse the structure of pictuneautainty soft G-modules under group actions. fitlewing theorems

are proved enhanced with group actions.

Definition 4.1: Let ‘A’ be a picture uncertainty soft sets on Mlah]R. Define picture uncertainty soft se on M as

follows:

P, =max{P,(y)/ yOM, x=ry}

I,

N, = max{N,(y)/yOM, x=ry} and

1, =min{l ,(y)/yOM, x=ry}.

Proposition 4.2:1f ‘A’ is a picture uncertainty soft set of G-mdéwf M and G be a finite group which acts on Mgrth—
1A =-A.

Proof: Let xXLIM be arbitrary.

P(—l)A(Xg) = L PA(yg)

x=(-1y

C P.x)

y=-X
= PA(_ Xg)

= P—A(Xg )
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A Group Action on Picture Fuzzy Soft G-Modules 37
similarly, N _»(x¢) = N_,(x*) and

! (—1)A(Xg) = |—A(Xg ), foreach xOM
Then the following is valid.

('1)A :(P(-l)A’ Niia I(-l)A) = (P-A N4, |-A) =-A

This completes the proof.
Proposition 4.3:If ‘A’ and ‘B’ are picture uncertainty soft setea &1, with A ] B, thenrA[rB, for each tIR.

Proof: It is straightforward by the definition.

Proposition 4.4:If ‘A’ and ‘B’ are picture uncertaintysoft sets drh and G be a countable group which acts on M, then

r(sA): (rS)A,for eachr, §IR.

Proof: Let xXLIM and r, $1R be arbitrary.

o (€)= T 1aly?)

X=ry

C Calz)

X= Iy y=SX

= [ 1)

= 1(s2)

= [ ()

x=(rs)z

= I(rs)A(Xg)

By the routine calculations the other equalitiess @stained, so
(sA) = ( (58 Nisays (s )

(P(rs)A’ N(rs)A’ I(rs)A)

=(rs)A
Hence the proof.
Proposition 4.5:1f ‘A’ and ‘B’ are picture uncertainty soft setqidM and G be a countable group which acts on My the

r(A+ B)= rA+rB for each £IR.

Proof: Let ‘A’ and ‘B’ are picture uncertainty soft sets M, xXLIM and _IR.

N,(ae)(X?) = C Naoly?)

X=ry
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38 S. V. Manemaran & R. Nagaraja

= [ min{N(z°) N (22}

XY Y=Y+,

= [ min{NA(Zf), NB(Zg)}

X=IXq +1Xy

- .ol g} g

= [ min{N,(x¢) N (x¢ )}

X=X Xy

= Ny (x):

The other equalities are obtained similarly.

Hence,l‘(A+ B) = (Pr(A+B)’ Nr(A+B)’ I r(A+B))

= (PrA+rB' NrA+rB’ er+rB)

= rA+rB.
Proposition 4.6: If ‘A’ is picture uncertaintysoft sets on M and B a countable group which acts on M, then
P, ()2 2P, (%), N ()7 =N, (x2) 1, ()7 <1, (x0)
Proof: It is straightforward by the definition.

Proposition 4.7:1f ‘A’ and ‘B’ are picture uncertainty soft sete & and G be a countable group which acts on Mj the
P,(rx)? > PA(xg ) for eachx(OM,
if andonlyif P, <P,
Ng ()= N, (x¢), for eachxOM,
if andonlyif N, <Ny
1,(rx)° < IA(xg), for eachxOM,
if andonlyif 1, =1,
Proof: (i) SupposeP, (rx)g =P, (Xg ), foreachxOM,

then PrA(Xg): L PA(yg)'

x=ry, yoM

So, P, < P;.
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A Group Action on Picture Fuzzy Soft G-Modules 39

Conversely, suppode, < P is satisfied,
thenP,, (xg ) < PR (xg ) for eachxOM.
Hence, P, (x?)2 P, (rx)? 2P, (x?), foreachx 1M

by Proposition 4.6), (ii) and (iii) are proved irsianilar way.

Proposition 4.8:1f ‘A’ and ‘B’ are picture uncertaintysoft sets dhand G be a countable group which acts on M, then
Paco(Px +5y)* 2 min{P, (x°) Py (v° )}
¢ NrASB(rX+Sy)g 2 rnin{NA(Xg )’ NB(yg )}

| pes(rx+ sy)? < max{i ,(x°), 1,5(y?}, for each xOM, r,sOR

Proof: It is proved by using Definition 3.6, Definition&8and Proposition 4.6.

Proposition 4.9:If A, B and C are three picture uncertainty sefisson M and ‘G’ be a countable group which act$/on
then the following are satisfied for each LIR:

« P(rx+sy)?=mir{R,(x?), R, (y? )}, forall x yOM if andonlyif P, ,<P:
¢ Ne(rx+sy)? =min{N, (x?) N, (y° ]}, forall x,yOMif andonlyif N .., <N,

o Ie(x+sy)=maxi,(xe)1,(ye ). forall x, yOM if andonlyif 1,21,
Proof: It is proved by using Proposition 4.8.

Theorem 4.10:Let ‘A’ be a picture uncertainty soft sets on MldG’ be a countable group which acts on M andefach
r, sUR, then

Pas Py = Pu()2 Pi(x)

Na<N, = N,(X)?2N,(x?) and

1a2l, = 1,(rx)? <1,(x°) foreachxOM.
Paa<Py = Pu(rx+sy) 2min{p, () Py (y° }
Nouen SN, = N(rx+sy) 2mirN, (x¢) N, (ye )

l rA<+sA2 I AT l A(rx + Sy)g SmaX{l A(Xg )’ l A(yg )}
Proof: The Proof follows from proposition 4.7 and Progiosi 4.9.

Theorem 4.11:Let ‘A’ be a picture uncertainty soft sets on Mda’ be a countable group which acts on M.Thell A
PFSGM(M) if and only if the following propertieseafulfiled.
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40 S. V. Manemaran & R. Nagaraja
A0?) = X.

Alrx +sy)° min{A(xg ) A(yg)}, .
foreachx,y(OM andr,sCOR

Proof: Let ‘A’ be a picture uncertainty soft G-module khand ‘G’ be a countable group which acts on M ang LI1M.

From the axiom (PFSGM-1) of Definition 3.1, it isarly that A(Og) = X.

From (PFSGM-2) and (PFSGM-3), the following arejru
P,(rx+sy)® = min{P, rx?), P,(sy*}

> min{P, (x¢), P(y? )}

N (x+ )72 minfN (P, N, (597}

> min{N,(x*) N,(y*} and

a(x sy < man (), 1, ()

< max{l ,(x?) 1,(y*}, foreachx yOM and r,sOR

HenceA(rx + sy)° :(PA(rx +sy)%, N, (rx+sy)°, 1 ,(rx+ sy)g)

\Y
3
=]
Z
>
—
X
«Q
~—
Z
>
<
@

Conversely, suppose ‘A’ exists the condition (iyl&i) then it is clearly hypothesié\(og) = )Z
P.(x+y)? =P, (Lx+1y)* 2min{p,(x*), P,(y* }

N, (x+y)? =N, (Lx+1y)® =min{N,(x*) N, (y* )}
bt y) =1, e 1y) <madi, ()1 (ye )
so, A(x+y)? = min{A(x?), Aly®} and the conditions (PFSGM—2) of Definition 3. sasisfied.

Now, let us show the validity of condition (PFSGM;By the hypothesis,
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PA(rX)g :PA(rX+r0)g 2rnin{l:)A(Xg)’ PA(og)}:PA(Xg)

NA(1)? =N,(rx+10)° =min{N, (%) NL (02 J =N, (%) 1,(ix)2 =1 4 (r x+r0)* <maxi ,(x@).1 (00 }=1,(x¢)
foreachx,yOM, r OR

Therefore, (PFSGM-3) of Definition 3.1 is satisfied

Theorem 4.12:Let ‘A’ and ‘B’ are picture uncertaintysoft G-molés of a classical module M and G be a countalemgr
which acts on M.Then intersectionAB is also a PFSGM of M.

Proof: Since A, BLIPFSGM(M), we have
Ao?)=X, B[0°)=X.
Pais(0°) = min{P, (0°) Py (00} =1
N e (07) = min{N,(0°) No (0o} =1
o (07) = max{i,(0°) 102} = 0
Let x, yOOM, r,sOR, by Theorem 4.11, it is enough to show that
(An B)(c+ sy)* zminf(an B)x?).(an B)y }
Paos (X +3)7 2 min{P. o (x°) Poo(y? )
N oo (P + 59)° 2 min{N o (62 ) N, (0 )

| s (rx+sy)° < maxdl 6 (x0) 1, (v0 )

Now, we consider the truth-membership degree ofrttesection,
Pava (X +5y)° =min{p, (1 + sy)*, Py (o + 5y)°}
2minjmin{P, (x* ) P, y* J min{P; (x? ) Py (y* J
=min{min{P, (x* ) Py (x® J min{P (v* ) Py (v* }

=min {PAn 5 (Xg ) Pas (yg )}

Then, other inequalities are proved similarly.

Hence, AN B L1 PFSGM (M).
Note 4.13:A non-empty subset N of M is a sub module of Mrfi only if rx+sy N for all X, yCOM, r,sUR,
Proposition 4.14:Let ‘M’ be a G-module over R. AIPFSGM(M) and G be a countable group which acts orif lnd

only if for all aD[O,]],a—IeveIsetsofA, (P.),,(N,)..(1,)" are classical G-modules of M where
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42 S. V. Manemaran & R. Nagaraja
A0?) = X.
Proof: Let ALIPFSGM(M), @ 1[0, 1], x, y O (P,), . and r,s0 Rbeanyelements

Then,PA(xg)z a, PA(yg)z a andmin{PA(xg), PA(yg)}za.

By using Theorem 4.11, we have,
P.(rx+sy)?2 min{PA(x)g, PA(y)g} >q.
Hence, rx + SyD(PA)

a

Therefore,(P, ), is a classical G-module of M for eagt{1[0, 1]
similarly, for x, y O1(N,)., (1,,)°
We obtainrx +sy0(N )., (I,,)" for eactr [0, 1]
Consequently(N,, ). , (1,,) are classical G-module of M for eagH1[0, 1.
Conversely, le{P, ). be a classical G-module of M for eagti1[0, 1]
Let X, yOM, a=min{P,(x)?, P,(y)?} then
P.(x)° 2a and P,(y)’ 2a..
Thus, %,y 0 (P,), -
since, (P,), is a classical G-module of M, we have

rx + sy((P,)_forall r,sOR.

Hence, (P, )J(rx + sy)¢ = @ = min{P, (x*), P.(y*}.

Similarly, we obtain

(N )+ ) 2 min{N, (x?) N, (y? )
Now, we conside{l , )7,

let x,yOM, a=max{l,(x¢) 1,(y° )} then
L )<a, 1,(y¢)<a.

Thus, X, y O (1,)7 .
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A Group Action on Picture Fuzzy Soft G-Modules 43

Since, (I A)a is a G-module of M, we havex + syD(I A)0'1‘or all r,sOR.
Thus, (1, )(rx + sy) < @ = max{l , (x¢), 1,(y¢)}.

It is also obvious thaA(Og) = X.

Hence, the conditions of Theorem 4.11 are satisfied

Proposition 4.15:Let ‘A’ and ‘B’ are two picture uncertainty sofets X and Y respectively and G be a countable group

which acts on M. Then the following equalities asatisfied for the a-levels (PAXB)U =(PA)U><(PB)

(NAXB)a =(NA)a X(NB)IJ

(o) = (1) x(R,)"

Proof: Let (X, y)= (PAXB)U be arbitrary.

a’

S0, Pas (X, y)? 2 = min{p, (x¢). p,(y* J2a

= P(x*)2a and P, (y® )2

= (xy)° O (R), x (Rs),

N o (% ¥)® = (N,), x(Ng), is proved in a similarly way.
Let (X, ¥)= (I 55 )" be arbitrary.

Hencel o (X, Y)? <a = max{l ,(x9)1,(y® }<a

=1 (x)<a and 1,(y?)<a

= (xy)P O ()" x(,)".

Proposition 4.16:Let A, BLIPFSGM(M).Then the product AB is also a picture uncertainty soft G-module of M.

Proof: We know that the direct product of two soft G-mieduis a G-module. So, by proposition 4.14 and sdjpn

4.15, we obtain the result.

Proposition 4.17:Let ‘A’ and ‘B’ are two pictureuncertainty fuzzp# sets on X and Y respectively and G be a couatab

group which acts on M ang: X — Y be a mapping. Then the followings hold:

0 ol(P),) O (Pya), .
o((N4),) O (Nyw), -

o(1.)7) 0 (1)
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Proof: (i) Let quo((PA)a), then there existS(D(PA) such that¢(x) =Y.

a

Hence, PA(Xg ) >q.

so, [ Pux)2a,
g™ (y)

Ge) Pyyly?)za and yo(Py,).

Hence,¢((P,),) O (Pya)). . similarly, we obtain other inclusions.
i) (Prg) ={xOX/P. (x?)2af
={xO0X/P,dx®) = a}

{xOox1¢x)0(R,),}

={x0x/x0e*(R), )}

=g ((PB )a )

The other equalities are obtained in a similar way.

Theorem 4.18:Let M, N be the classical G-modules agd M — N be a homomorphism of pre image_l(B) is a
PFSGM of M.

Proof: By proposition 4.17 (ii), we have

g’ ((PB)a) = (P(,,-l(g))a’

Since Pre image of a G-module is a G-module, bpgsition 4.14, we obtain the result.

Corollary 4.20: If ¢:M — N is a homomorphism of G-module an{Ej ' Dl} is a family of picture fuzzy soft G-

Impact Factor (JCC): 4.9784 NAAS Rating 3.45



A Group Action on Picture Fuzzy Soft G-Modules 45

modules of N, then the image_l(ﬂ Bj ) is a PFSGM of M.

Theorem 4.21:Let ‘M’ and ‘N’ be the classical G-modules agd: M — N be a homomorphism of G-modules. If ‘A’

is a PFSGM of M and G is a countable group whidk an M, then the imag¢(A) is a PFSGM of N.
Proof: By proposition 4.14, it is enough to show tr(zR(p(A) )a ’(Nw(A))a ,(I ¢(A))a are G-sub modules of N for all
a0, 1 Lety,, y,0¢((P,), ).

Then Py (ylg)Z a and Py, (yzg) > @ there existsX;, X, [IM such that
PA(Xlg)Z a, Py (ylg)z a and

PA(ng) >aq, Pq,(A)(yzg) > Q.

Then PA(xlg)z a, PA(ng)z a and
)

Since ‘A’ is a PFSGM of M, for any, s[IR, we have

Pu(rx, + %)= minfPy(x.)°, PA(x,)*} 2 @

Hence,rx, +5%,0(P, ), = ¢, + 5% )0g(Py ), O(Pyu)
= rglx) +sdx,)0 (P¢(A)),,

= 1y, +sy, O(P,n). -

Therefore, (Pw(A) )a is a G-sub module of N.
.. a .
Similarly, (N¢(A) )a, (I ¢(A)) are classical G-sub modules of N for eeﬂ:lﬂ[o, 1]

By Proposition 4.14¢(A) is a PFSGM of N.
Corollary 4.22: If ¢: M - N is a surjective G-module homomorphism a{A g I} is a family of picture
uncertainty soft G-modules of M, then the ima(gél(ﬂ A) is a PFSGM of N.

Definition 4.23: Let ‘A’ be a PFSGM of M and G be a countable graupch acts on M, then ‘A’ is said to be G-invarian
PFSGM of M if and only ifA° (x) = Alx¢ )= A(x), forall xOM, gG.

Theorem 4.24:Let M and M' be Z-module which G acts and let® a bijective G-module homomorphism from M, then

f (A)is a G-invariant PESGM of M.

www.iaset.us editor @ aset.us
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Proof: Since ‘A’ is a G-invariant PFSGM of M', therefod® = A, for g 0 G.
Now, (f(A))* = f(A?) = £(a), DgOG.
Hence, f (A) is G-invariant PFSGM of M".

CONCLUSIONSs

From the philosophical point of set view, it hagihehown that a picture uncertaintysoft set geizesl usual
set, fuzzy set, interval valued uncertainty seyitionistic uncertainty set etc. A picture uncertg soft set is an instance

of picture uncertaintyy set which can be used &t seientific and E-generating problems.
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